メモリレコーダ／アナライザ EDX－3000A
 MEMORY RECORDER ANALYZER

高速サンプリング200kHz／32チャネル動画データの同時集録（200fps）

EDX－3000A MemoryRecorder Analyzer

EDX－3000Aは高度な機能と高速処理能力を持つた先進の据置型側定器で， EDXシリーズの最上位機種です。オ ンラインノオフライン制御が可能で，別売のディスプレイとキーボードを装備すれば，オールインワンロガー としてもご使用になれます。
好評のダイナミックデータ集録ソフト ウェアDCS－100Aと同等の操作がで きるソフトウエアがインストールされ ていますので，多彩なグラフウインドウ で測定中のデータをモニタ・集録でき るばかりでなく，測定データと動画の同時集録やリアルタイムでロゼット解析など演算処理をすることもできます。

応用例

○自動車をはじめ各種産業における材料試験

○鉄道走行試験

○研究／教育機関における機械工学や スポーツ工学

高速サンプリング200kHz／32チ．高速度カメラで動画（200fps＊）

目的に合わせて選択できるコンデイショナカード

各コンディショナカードは，EDX－100A，EDX－2000Aと共通。ひずみ／電圧や温度を はじめCANデータに対応するカードも用意していますので，用途に最適のシステムを構築できます。最大8枚まで実装して最大64チャネルの計測が可能です。（P．2～3参照）

抜群の操作性

ダイナミックデータ集録ソフトウェアDCS－100Aと同等の操作性のソフトウエアが内蔵されていますので，設定からモニタ・集録•再生まで容易に行うことができます。モニ夕•集録中には測定データを各種グラフで観察できるばかりでなく，動画もモニタでき ます。リアルタイムでの演算も可能です。再生時には，統計処理，頻度解析などを行う こともできます。（P．4～5参照）

充実したリアルタイム処理機能

高速高性能CPUを搭載。四則演算•FFT解析はもとより，ハイパス／ローパスフィルタ処理，移動平均，微分積分をリアルタイムで行うことができます。

リアルタイムロゼット解析

オールインワンロナ゙ーに友身

別売のディスプレイとキーボードを用意すれば，現場で設定，モニタ，集録，解析を行うことができます。市販のディスプレイやマウス，キーボードを接続する こともできます。（お問い合わせください。）

※frames per second 1 秒間に取り込めるコマ数

ャネルの測定（100kHz／64チャネル）
 の同時集録

本体のみで集録可能

REC／PAUSE，STOP，BAL，OPT．キーが前面パネルに装備されていますので，ディスブレイやキーボードがなくて も，集録の開始•中断•停止やバランス実行，モニタ開始， CAL出力などを行うことができます。
同様の操作は別売のリモコンで行うこともできます。
また，動作状態を前面パネルの小型表示で確認することができます。

モニタ中

トリガモードで集録中

LEDランプで各チャネルの状態を一目で確認

入カオーバが発生するとLEDがグリーンからレッド点灯に変わり，ビープ音で警報を発 します。バランス実行中はオレンジです。不使用チャネルやカードを実装していない チャネルはLED消灯で示されます。

バランス実行中

入力オーバ発生
17チャネル入力オーバ

測定ON 測定OFF

複数のEDX－3000Aをオンラインで遠隔制御

別売のDCS－100Aをパソコンにインストー ルすると遠隔から複数のEDX－3000Aを制御し，データ回収・ファイル結合が行えます。

豊富な外部入出カコネクタ（BNC）

TRG IN，TRG OUTは外部トリガ信号の入出力， READYは集録中Lowを出力，CLKIN，CLK OUTは外部クロック信号の入出力です。
CLK OUTはクロック信号を分周して出力できますので高速度カメラや外部ロガーの同期用クロックとして利用可能です。
 200Hzのクロックを供給

本体ハードウェア仕様

型式名	EDX－3000A－H：ハードディスクドライブ（HDD）容量100GB EDX－3000A－S：リリッドステートドライブ（SSD）容量30GB
対応コンディショナ	$\begin{aligned} & \text { CDV-40A/B(-F), DPM-42A(-F), CTA-40A, CFV-40A, } \\ & \text { CCA-40A(-F), CAN-40A, CAN-41A } \end{aligned}$
入カチャネル数	最大64（CDV－40Bを8枚実装時）
アナログ入力	詳細は各コンディショナカードの仕様を参照
ディジタル入カ	32ビット（TTLLベル，接点入力）
音声入力	1 アャネル（集録中に入力した音声メモを測定データと共に集録可能）
サンプリング方式	全チャネル同時サンプリング
サンプリング周波数	```1-2-5系列 1Hz~200kHz: 32チャネルまでのデー夕集録時 1Hz~100kHz: 64チャネルまでのデータ集録時 1Hz~10kHz: リアルタイム処理有効時,CANデータ測定時 2n系列 2Hz~131072Hz: 32チャネルまでのデータ集録時 2Hz~65536Hz: 64チャネルまでのデータ集録時 2Hz~8192Hz: リアルタイム処理有効時,CANデータ測定時```
表示	チャネル状態表示LED（チャネル毎に入力OVER値しベル設定可能） REC／PAUSE LED状態表示小型LCD（20文字 $\times 2$ 行）
操作キー	本体キー（REC，STOP，BAL，OPT．）
外部制御コネクタ	CONT IN，CONT OUT（リモコン，同期運転用）
外部入出力コネクタ	外部トリガ TRG IN，TRG OUT 外部クロック CLK IN，CLK OUT（任意の分周比で出力可能） 動作状態出力 READY
外部機器 インタフェース	キーボードI／F ミニDIN 6ピン マウスI／F ミニDIN 6ピン 外部表示器I／F VGAコネクタ（モニタ用15ピン） USB I／F USB2．O（前面2ポート，背面6ポート） LAN I／F 10／100／1000BASE－T
電源	AC100～240V，50／60Hz瞬時停電用バッテリ内蔵
消費電流	2．0A（ACl00V，CDV－40A／Bを8枚実装時）
使用温湿度範囲	0～400．，20～80\％RH（結露しないこと）
保存温度範囲	$-20^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$
耐振性	```49.0m/s}\mp@subsup{}{}{2}(5G), 5~55Hz(非動作時) 29.4m/s}\mp@subsup{}{}{2}(3G), 5~55Hz(動作時) EDX-3000A-H: 9.8m/s}\mp@subsup{}{}{2}(1\textrm{G}), 10~200Hz(動作時) EDX-3000A-S: 19.6m/s}\mp@subsup{}{}{2}(2G), 10~200Hz (動作時)```
耐衝撃性	$196.1 \mathrm{~m} / \mathrm{s}^{2}(20 \mathrm{G}) / 11 \mathrm{~ms}$
外形寸法	440 （W）$\times 186$（H）$\times 341$（D）mm（液晶部，突起部含まず）
質量	約13．8kg（本体のみ）
別売品	－着脱式15型LCDディスプレイ EMOM－30A －キーボード －マウス －リモートコントロールユニット RCU－42A（P．1参照）

コンデイショナカード（別売品）
ひずみ／電圧測定カード CDV－40B，CDV－40B－F＊

	ひずみ測定	電圧測定
入カチャネル数	8（集中コネクタ）	
入力形式	平衡差動入力	不平衡入力
入力抵抗	約（10Mn＋10M $)$	約1M8
カップリング	DC／AC（DCカット）	
適用ゲージ率	2.00	
適用ブリッジ抵抗	120 $\sim 1000 \Omega$	－
ブリッジ電源	DC2V	－
平衡調整範囲	抵抗分 $\pm 2.4 \%$（ $\pm 12000 \times 10^{-6 ひ す ゙ み) ~}$	
測定レンジ	500，1k，2k，5k，10k，20k， 50k $\times 10^{-6}$ ひずみ，OFFの8段	$0.1,0.2,0.5,1,2$, 5，10V，OFFの8段
レンジ精度	各レンジ $\pm 0.2 \%$ FS	
校正値（CAL）	各レンジ $\pm 100 \%$ ，$\pm 50 \%$	
非直線性	$\pm 0.1 \%$ FS	
応答周波数範囲 DC結合時 DCカット（AC結合時）	$\begin{aligned} & \mathrm{DC} \sim 50 \mathrm{kHz} \text { 偏差+1dB, - 3dB } \\ & 0.2 .1 \mathrm{~Hz} \sim 5 \mathrm{kHz}(\text { (ハイパスフイルタの項参照 }) \end{aligned}$	
ローパスフィルタ カットオフ周波数 カットオフ点の振幅比減哀特性	$\begin{aligned} & \text { 2次バタワース型 } \\ & 10,30,100,300,1 \mathrm{k}, ~ 3 \mathrm{k}, 10 \mathrm{k}[\mathrm{~Hz}] \text { およびF(フラット)の8段 } \\ & -3 \mathrm{~dB} \pm 1 \mathrm{~dB} \\ & -12 \mathrm{~dB} / \text { oct. } \pm 1 \mathrm{~dB} / \text { oct. } \end{aligned}$	
$\begin{aligned} & \text { アンチエリアジング } \\ & \text { フィルタ } \\ & \text { (CDV-4OB-Fのみ) } \end{aligned}$	8次バタワース型 カットオフ周波数：サンプリング周波数 $\times 0.25$ に自動設定 遮断特性：$-48 \mathrm{~dB} \pm 5 \mathrm{~dB}$（サンプリング周波数 $\times 0.5$ の時） ※本体でローパスフィルタを［AUTO］に設定時	
ハイパスフィルタ （DCカット）	カットオフ周波数：0．2Hz，1kHz減衰特性：－6dB／oct．	
分解能	16ビット	
付加機能	TEDS内蔵センサの情報読込	
別売品	- 電圧変換アダプタ FV－1A - 8チャネル入カケーブル U－38～U－48 リモートセンシング付変換器は，N－81～N85を併用 －8チャネルブリッジボックス DB－120T－8	

動ひずみ測定カード DPM－42A，DPM－42A－F＊

概要	ひずみゲージ，ひずみゲージ式変換器用の力ードで，ブリッジ電源に搬送波を使用しており，低しベルのひずみ測定に適しています。入力 と出力間およびチャネル間は絶縁されています。
測定対象	ひずみゲージ，ひずみゲージ式変換器
入力チャネル数	4
周波数応答範囲	DC～5kHz（偏差 $\pm 10 \%$ ）
搬送波周波数	12kHz
適用ブリッジ抵抗	120～1000』
適用ゲージ率	2.00 固定
ブリツジ電源	2Vrms，0．5Vrms切換，12kHz正弦波
平衡調整範囲	抵抗：$\pm 2.4 \% ~\left(\pm 12000 \times 10^{-6}\right.$ ひすす $)$容量：2000pF
平衡調整方式	抵抗：純電子式オートバランス（不揮発性メモリに保存）容量：CST方式（自動追尾）
測定レンジ	ブリッジ電源2Vrms時：200，500，1000，2000，5000， $10000,20000 \times 10^{-6}$ ひずみおよびOFFの8段 ブリッジ電源0．5Vrms時：1000，2000，5000，10000， 20000，50000 $\times 10^{-6}$ ひずみおよびOFFの7段
校正値（CAL）	各レンジの $\pm 100 \%$ ，$\pm 50 \%$ を出力
非直線性	$\pm 0.2 \% F S 以 内$
ローパスフィルタ カットオフ周波数 カットオフ点の振幅比減衰特性	$\left.\begin{array}{l} \text { 2次バタワース型 } \\ 10,30,100,300,1 \mathrm{k}[\mathrm{~Hz}] お よ ひ ゙ F L A T の 66 \end{array}\right)=\text { 段 }$
$\begin{aligned} & \text { アンチエリアジング } \\ & \text { フィルタ } \\ & \text { (DPM-42A-Fのみ) } \end{aligned}$	8次バタワース型 カットオフ周波数：サンプリング周波数 $\times 0.25$ に自動設定遮断特性：$-48 \mathrm{~dB} \pm 5 \mathrm{~dB}$（サンプリング周波数 $\times 0.5$ の時） ※本体でローパスフィルタを［AUTO］に設定時
分解能	16ビット
付加機能	入カチエック機能：ブリツジの一辺に抵抗を挿入し，入カをチエック TEDS内蔵センサの情報読込
モニタ出力	$\pm 5 \mathrm{~V}$ 精度：$\pm 0.5 \%$ 以内（ +FS 時）非直線性：0．5\％FS以内
耐電圧	入力一出力間 AC250V 1分間
別売品	－モ二タ出力用ケーブル H－10296

Hardware Specifications

熱電対カード CTA－40A

概要	K（CA），T（CC）の2種の熱電対で温度を測定できるカードです。 入力と出力間およびチャネル間は絶縁されています。
測定対象	熱電対 K（CA），T（CC）

F／Vコンバータカード CFV－4OA

概要	入力されたパルスの周波数を測定するカードで，センサへ供給する 電源も備えています。入力と出力間は絶縁されています。
測定対象	交流信号出力センサ
入力チャネル数	4
入力信号	交流（ゼロクロス），TTLLベル（オープンコレクタ信号を含む）
入力電圧範囲	$\pm(0.5 \mathrm{~V} \sim 50 \mathrm{~V}):$ ヒステリシス大
	$\pm(0.1 \mathrm{~V} \sim 50 \mathrm{~V}):$ ヒステリシス小

概要	圧電型加速度計用のコンデイショナです。
測定対象	圧電型加速度計
適用加速度計	増幅器内蔵型（電圧出力型）
入カチャネル数	8
センサ電源	定電流電源（定電流：4mA，印加電圧：約DC24V，負荷1k』以下）
応答周波数範囲	1～20kHz（偏差：+1 dB ，－3dB）
測定レンジ	20，50，100，200，500，1000，2000，5000mVおよびOFFの9段精度：$\pm 1 \%$ FS以内
校正値	DC CAL：各レンジの 100% ． 50% 精度：$\pm 0.2 \%$ FS以内 AC CAL：各レンジの 100% ， 50% 精度：$\pm 1 \%$ FS以内周波数精度： $100 \mathrm{~Hz} \pm 5 \%$ 以内
ローパスフィルタ カットオフ周波数 カットオフ精度減衰特性	$\begin{aligned} & \text { 2次バタワース型 } \\ & 300,1 \mathrm{k}, ~ 3 \mathrm{~K}, 10 \mathrm{k}[\mathrm{~Hz}] \text { およびFLATの5段 } \\ & -3 \mathrm{~dB} \pm 1 \mathrm{~dB} \\ & -12 \mathrm{~dB} / \mathrm{oct} . \pm 1 \mathrm{~dB} / \text { oct. } \end{aligned}$
$\begin{aligned} & \text { アンチエリアジング } \\ & \text { フィルタ } \\ & \text { (CCA-4OA-Fのみ) } \end{aligned}$	8次バタワース型 カットオフ周波数：サンプリング周波数 $\times 0.25$ に自動設定遮断特性：$-48 \mathrm{~dB} \pm 5 \mathrm{~dB}$（サンプリング周波数 $\times 0.5$ の時） ※本体でローパスフィルタを［AUTO］に設定時
歪率	1\％以下
分解能	16ビット
モニタ出力	$\pm 5 \mathrm{~V}$ 精度：$\pm 1 \%$ 以内（ +FS 時）
付加機能	TEDS内蔵センサの情報読込
標準付属品	－入カケーブル U－111
別売品	集中出力ケーブル U－62 変換アダプタ（BNCミニチュア）BNCP－C25J－A

CANカード CAN－40A，CAN－41A

概要	Controller Area Network上のデータフレームを測定するための カードです。CAN－4OAは最大16種類のデータフレーム，デュアル入力のCAN－41Aは通信系統が異なる2系統のデータフレーム（最大32種類）を通常のアナログデータと同時に集録できます。
CANポート数	CAN－40A： 1 CAN－41A：2（2ノード）
コネクタ形状	Dsub 9pin（オス）
対応CANバージョン	Bosch 2．OB active対応（ISO－1 1898仕様準拠） ハイスピードCAN／ロースピードCAN切換
測定ID数	CAN－40A：最大16 CAN－41A：最大32
CANコントローラの動作クロック	$40 \mathrm{MHz}, 32 \mathrm{MHz}$
通信速度	
通信条件	サンプルポイント，サンプル回数，再同期ジャンフ幅選択
測定チャネル条件	スタートビツト，ビツト長，データタイプ，校正係数 （CANデータを切り出し，物理量に変換するための条件）
グラフ表示	数値表示，フレーム表示，アナログデータと同時にグラフ表示
備考	本体の最終スロットに1枚のみ実装可
	CANデータ測定時，サンプリング周波数は最大10kHzlに限定されます。

＊CDV－40B－F，DPM－42A－F，CCA－40A－Fは，アンチエリアジングフィルタ付

ソフトウェア仕様 各種設定・モニタ・データ再生を行ごにはディスフレイ，マウス，キーボードが必要です。

測定条件

チャネル条件	測定ON／OFF，測定モード，レンジ，ハイパスフィルタ， ローパスフィルタ，バランスON／OFF，CALLンジ，CAL ON／OFF， 校正係数，オフセツト，単位，チャネル名称，測定範囲，定格容量， 定格出力，数値表示桁数（任意に表示項目の選択が可能）
集録可能データ数	内蔵ディスク残り容量まで（サンプリング周波数1～10kHz） 2～2，000，000，000個（サンプリング周波数10001Hz～200kHz）
マニュアル測定	RECからSTOP間あるいは，RECから指定したデー夕数まで集録
インタバル測定	集録開始時間，集録間隔の設定により自動的に集録
トリガ測定	設定したトリガ条件により集録の開始／停止 共通卜リガ条件 終アトリガ 設定可能 ディレイ量 開始／終了共に最大4，194，304データ／チャネル ※ディレイ量はサンプリング周波数，および測定チャネル数により異なる アナログトリガ条件 トリガチャネル 任意の1チャネル トリガレベル 工学値により設定 トリガスロープ Up／Down デジタルトリガ条件 トリガビット 任意1ビット トリガレベル 0.1 外部トリガ条件 トリガスロープ Up／Down 複合トリガ条件 トリガソース アナログチャネル／デジタルチャネルで任意4チャネル，外部トリガ1チャネル， マニュアルトリガ1チャネルから選択
	AND／OR アナログトリガ，デジタルトリガ，外部トリガは AND／ORにより論理判定可能 トリガレベル アナログチャネルは工学値により設定， $\text { ディジタルチャネルは0, } 1$ トリガスロープ Up／Down

TEDS情報颜込 TEDS情報の読み込み，および読み込んだ条件による自動設定

CAN測定条件

測定動作

モニタ測定，集録開始，集録中断，集録終了，バランス実行，CAL出力などが可能
リアルタイム処理
測定データのモニタ・集録と同時に行うことが可能な処理

測定データのモニタ・集録と同時に行うことが可能な処理
サンプリング周波数の制限は，最大10kHz

Webカメラでの動画集録

Webカメラでの動画集録						
使用カメラ	DirectX対応Webカメラ （OSがイメージデバイスとして認識するWebカメラ）					
使用カメラ台数	1台					
解像度サイズ	最大640×480					
フレームレート	最大3Ofps					
保存形式	AVI形式 ※解像度サイズ，フレームレートは使用するカメラによって決定される。 Webカメラは別途必要。					
動画集錄時の測定条件	測定モード：マニユアル，マニユアル（集録データ数設定）					

$\begin{aligned} & \text { ハイパス・ローパス } \\ & \text { フィルタ } \end{aligned}$	カットオフ周波数：サンプリング周波数／2未満まで設定可能次数：2～4次
微分•積分回数	1.2
移動平均データ数	2～5000
四則演算	最大32個の演算式を設定可能（200文字以内） 6分力計マトリックス入力可能 演算子：十，－，＊，，べき乗，括弧 正弦，余弦，正接，逆正弦，逆余弦，逆正接 常用対数，自然対数，指数 3軸口ゼット解析（最大主ひずみ，最小主ひずみ，最大せん断ひずみ， 最大主応力，最小主応力，最大せん断応力，主ひずみの方向）

演算処理時の測定条件 測定モード：マニュアル，マニュアル（集録データ数設定），インタバル

FFT解析

	FT解析
解析種類	リニアスペクトラム，パワースペクトラム，クロススペクトラム自己相関，相互相関
窓関数	OFF，ハミング，ハニング，フェイエル，ブラックマン，ガウシアン
解析データ数	256，512，1024，2048，4096，8192
表示可能け解析ウインド数	最大8
保存形式	共和標準ファイルフォーマット（KS2形式） KS2ファイルバージョン： 01.04

モニタ画面

時系列グラフ	X軸は時間軸，Y軸は測定した物理量表示で最大16チャネル表示 1ウインドウに1～4グラフ表示可能
時系列（DIV）グラフ	X軸は時問軸，Y軸は物理量で最大16チャネル表示可能 上記時系列グラつと異なり，表示チャネルの 0 点位置をY軸分割線上の任意の位置し変更可能
$\begin{aligned} & \text { 時系列(全チャネル) } \\ & \text { グラフ } \end{aligned}$	X軸は時間軸，Y軸は測定した物理量で全チャネル表示 上記時系列グラフと異なり，表示チャネルのライン色は全チャネル共通
X－Yグラフ	X軸，Y軸共に任意8チャネルの組み合わせでグラフ表示
バーグラフ	1グラフで最大32チャネル表示，1ウインドウに1～4グラフ表示可能 ピークホールドON／OFF
デジタルグラフ	X軸は時間軸，Y軸は任意のデジタルチャネルのビツトデータを最大 16ビット表示 1ウインドウで1～4グラフ表示可能
円メータ	任意の1チャネルを円メータで表示
バーメータ	任意の1チャネルを横向き，縦向きのバーメータで表示
数値表示	任意の1チャネル，任意の16チャネルまたは全チャネル表示
画面表示色	任意に変更可能
タイトル，ラベル	任意にタイトル，X軸／Y軸ラベルを設定可能
表示可能な ウィンドウ数	数値表示8ウインドウ，グラフ表示8ウインドウ
情報表示	タイトルバー，ステータスバーに各種情報を表示

Software Specifications

データ再生

集録データ表示	
グラフ表示時系列グラフ X-Yグラフ	1グラフにつき4パターンの表示条件を設定可能 X軸は時間軸，Y軸は測定した物理量表示で最大16チャネルまで表示 1ウィンドウで1～4グラフ表示 X／Y軸共に任意4チャネルの組み合わせでグラフ表示
全データ表示	1ウインドウに4チャネル間隔で全データを表示
数値データ表示	集録データの一覧表を表示 1ウインドウに任意16チャネルの集録データを各チャネル最大 10000データまで表示
カーソル表示	カーソル位置の工学値を数値表示 2本のカーソル間の拡大表示可能 スクロール機能
ヘッダ情報編集	タイトル，チャネル条件（校正係数，オフセツト，単位など）の表示，編集
KS2ファイ	MAX／MINデータ表示，音声データー覧と音声再生
動画再生 再生可能ファイル形式操作 同期表示	AVIファイル 再生•停止•一時停止・コマ送ち・逆コマ送わ，ズーム，再生速度変更可能動画データとグラフ波形のカーソルを連動して再生
集録デー夕解析	
統計処理	集録データファイルの任意範囲の最大値，最小値，平均値，標準偏差 と最大値，最小値のデータ位置を一覧表示 統計演算結果はCSVファイルで保存可能
四則演算	最大2個のファイル內のチャネル間演算を行い，演算結果を新規ファ イルに保存（最大320個の演算式を設定可能） 演算式：60文字以内 演算子：＋，－＊，／ 正弦，余弦，正接，逆正弦，逆余弦，逆正接 常用対数，自然対数，指数 3軸口ゼット解析（最大主ひずみ，最小主ひずみ，最大せん断ひずみ， 最大主応力，最小主応力，最大せん断応力，主ひずみの方向）
FFT解析	
解析種類	リニアスペクトラム，パワースペクトラム，クロススペクトラム自己相関，相互相閭，コヒーレンス，伝達閏数 OFF，ハミング，ハニング，フエイエル，ブラックマン，ガウシアン 256，512，1024，2048，4096，8192，16384，32768 1，2，5，10，20，50，100，200，500，1000，2000Hzおよび FLAT（フラット）の12段
窓関数	
解析データ数	
フィルタ	
積分回数	0～2
平均回数	1～（0：波形全体）
シフトデータ数	2以上
解析結果グラフ表示	時系列グラフ 解析グラフ1 解析グラフ2
リニアスペクトラム	－振幅（リニア）／振幅（対数）位相
パワースペクトラム	－振幅（リニア）／振幅（対数）
クロススペットラム	－振幅（リニア）／振幅（対数）位相
自己相関	－相関
相互相関	－相関
コヒーレンス	－コヒーレンス
伝達関数	－伝達関数 位相
	解析結果の保存は，CSVファイル
頻度解析	
解析対称チャネル頻度解析種類	最大全チャネル 極大値／極小値，最大値／最小値，1 次元レインフロー法振幅法，1次元時間率法 1 次元レインフロー＋極大値／極小値法 1 次元レインフロー＋最大値／最小値法 2次元レインフロー法 1 次元型：10（ $\pm 5) ~$ 256（ ± 128 ）の偶数個 2次元型：10～50の偶数個 スライス幅，ヒステリシス，オフセット（最大値／最小値法時）な どを設定可能 作表表示，作図表示（2次元レインフロー法時は3次元表示）
スライス数 結果表示	
フィルタ処理	デジタルフィルタ：IIRフィルタ，4次バタワース特性 （ただし，カットオフ特性は－6dB，位相遅れ無し） ハイパス・ローパスフィルタ：FLAT～500kHzまで設定可能 （サンプリング周波数／こまで有効） ミラーリング処理
微分積分処理	微分／積分回数（1，2），処理後の単位が設定可能積分処理時には平均値補正処理が可能

ユーティリティ	
複数フアイルの一括変換	CSV形式，XLS形式，RPCIII形式に変換可能
ファイル結合	同期運転で集録した複数のデータファイル（マスタとスレーブ）を 1ファイルに結合
ファイル逆変換	本ソフトウェアでCSV形式に変換したデータファイルとKS2形式に変換
一括解析処理	複数フアイルを同一条件で一括して解析処理解析処理は，頻度解析，フィル夕処理，微分積分処理
その他	複数ファイルの重ね書き表示 最大 16 個のデータファイルを時系列データとして重ね書き表示

環境設定

同期運転の設定	スタンドアローン，同期マスタ，同期スレーブより選択
集録設定	データファイルの保存先を設定
ファイルの自動変換	測定終了時にファイル変換（CSV形式，XLS形式，RPCII形式）を自
動で行う。	

印刷

印刷可能項目	設定条件．数値データ，グラフ
備考	別途プリンタタトライバのインストール必要

研究者のための

信号視覚化解析ソフトウェア

NI DIAdem
NI DIAdemのインストールが可能。
インストールにより下記のことが可能になります。

- 最大1000偣ホイントのデータと解析結果を分頝管理
- テータマイニングで先進のテータ機索

ビテオおよび3D－CADモデルしで測テータの同賏表示
－繑引返処框の自動化

www．diadem．jp

モニタディスプレイ付（オプション）

詳しくは，共和電業 模索 www．kyowa－ei．co．jp

安全に関する －正しく安全にお使いいただくために，ご使用前に必ず「取扱説明書記載の安全上のご注意」をよくお読みください。 －水，湿気，湯気，ほこり，引火性ガス等の多い場所に設置しないでください。火災，感電，故障等の原因になることがあります。
ご注意

■記載の仕様•意匠等は予告なく変更させていただくことがあります。■記載製品を特殊用途にご使用いただく場合にはお問い合わせください。■記載の会社名および商品名は，それぞれ各社の商標または登録商標です。

\square 札睍棠業所

\square 札谠営業所	TE
\square 東北党業所	TE
－宇都宮営業所	TE
\square 日立営業所	T
\square 筑波営業所	TE
\square 北関東営業所（熊谷）	TE
－東京営業所	TE
\square 厚木営業所	TE
\square 豊田営業所	E
口名古屋営業所 営業課	TE
エンジニアリング課	TE
\square 京都営業所	TE
\square 大阪営業所 営業課	TE
エンジニアリング課	TE
\square 明石営業所	TE
\square 広島営業所	TE
\square 福岡営業所	TE
－インフラ営業部	TE
口海外部	TE

TEL．011－823－5311	FAX．011－821－3366
TEL．0237－41－1530	FAX．0237－41－2071
TEL．028－634－7521	FAX．028－634－7522
TEL．029－265－5711	FAX．029－265－5712
TEL．029－852－1891	FAX．029－852－1893
TEL．048－527－0710	FAX．048－527－0712
TEL．03－5226－3551	FAX．03－5226－3570
TEL．046－296－5660	FAX．046－295－1344
TEL．0565－37－8600	FAX．0565－37－7335
TEL．052－774－8111	FAX．052－774－8100
TEL．052－778－6450	FAX．052－778－6453
TEL．075－583－5180	FAX．075－582－1420
TEL．06－6315－6761	FAX．06－6315－1949
TEL．06－6315－0976	FAX．06－6315－1949
TEL．078－917－5181	FAX．078－913－2048
TEL．082－293－8850	FAX．082－293－8770
TEL．092－411－6744	FAX．092－411－4266
TEL．03－5226－3558	FAX．03－5226－3563
TEL．03－5226－3553	FAX．03－5226－3566

Cat．No．1571－E3

